summary_of_hypothesis_testing
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| summary_of_hypothesis_testing [2025/11/30 15:44] – [output] hkimscil | summary_of_hypothesis_testing [2025/11/30 23:00] (current) – hkimscil | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| ====== Hypothesis testing ====== | ====== Hypothesis testing ====== | ||
| see also [[:types of error]] | see also [[:types of error]] | ||
| + | |||
| ====== Basic ====== | ====== Basic ====== | ||
| see first [[:sampling distribution and z-test]] | see first [[:sampling distribution and z-test]] | ||
| - | ====== Hypothesis testing, | + | ====== Hypothesis testing, |
| - | ... | + | 샘플은 p2에서 (mu.p2 = 104) probability sampling을 한 샘플. 그러나, 샘플의 평균이 101.05가 나와서 가설 검증에 실패. 이런 경우가 type 2 error를 범한 경우. 효과가 4만큼 나타나는 모집단에서 샘플이 나왔음에도 불구하고 평균이 100인 집단의 샘플로 추정되어 영가설을 부정하지 못하고, 연구가설을 채택하지 못함. |
| < | < | ||
| * :summary of hypothesis testing: | * :summary of hypothesis testing: | ||
| Line 11: | Line 12: | ||
| </ | </ | ||
| + | ====== Hypothesis testing, 가설검증에 성공한 경우 (n=25) ====== | ||
| - | ====== se value and sample size ====== | + | <tabbed> |
| - | + | | |
| - | <code> | + | |
| - | n.ajstu <- 100000 | + | </tabbed> |
| - | mean.ajstu <- 100 | + | |
| - | sd.ajstu <- 10 | + | |
| - | + | ||
| - | set.seed(1024) | + | |
| - | ajstu <- rnorm2(n.ajstu, | + | |
| - | + | ||
| - | mean(ajstu) | + | |
| - | sd(ajstu) | + | |
| - | var(ajstu) | + | |
| - | + | ||
| - | iter <- 10000 # # of sampling | + | |
| - | + | ||
| - | n.4 <- 4 | + | |
| - | means4 <- rep (NA, iter) | + | |
| - | for(i in 1:iter){ | + | |
| - | | + | |
| - | } | + | |
| - | + | ||
| - | n.25 <- 25 | + | |
| - | means25 <- rep (NA, iter) | + | |
| - | for(i in 1:iter){ | + | |
| - | means25[i] = mean(sample(ajstu, | + | |
| - | } | + | |
| - | + | ||
| - | n.100 <- 100 | + | |
| - | means100 <- rep (NA, iter) | + | |
| - | for(i in 1:iter){ | + | |
| - | | + | |
| - | } | + | |
| - | + | ||
| - | n.400 <- 400 | + | |
| - | means400 <- rep (NA, iter) | + | |
| - | for(i in 1:iter){ | + | |
| - | means400[i] = mean(sample(ajstu, | + | |
| - | } | + | |
| - | + | ||
| - | n.900 <- 900 | + | |
| - | means900 <- rep (NA, iter) | + | |
| - | for(i in 1:iter){ | + | |
| - | | + | |
| - | } | + | |
| - | + | ||
| - | n.1600 | + | |
| - | means1600 <- rep (NA, iter) | + | |
| - | for(i in 1:iter){ | + | |
| - | means1600[i] = mean(sample(ajstu, | + | |
| - | } | + | |
| - | + | ||
| - | n.2500 <- 2500 | + | |
| - | means2500 <- rep (NA, iter) | + | |
| - | for(i in 1:iter){ | + | |
| - | means2500[i] = mean(sample(ajstu, | + | |
| - | } | + | |
| - | + | ||
| - | h4 <- hist(means4) | + | |
| - | h25 <- hist(means25) | + | |
| - | h100 <- hist(means100) | + | |
| - | h400 <- hist(means400) | + | |
| - | h900 <- hist(means900) | + | |
| - | h1600 <- hist(means1600) | + | |
| - | h2500 <- hist(means2500) | + | |
| - | + | ||
| - | + | ||
| - | plot(h4, ylim=c(0, | + | |
| - | plot(h25, add = T, col=" | + | |
| - | plot(h100, add = T, col=" | + | |
| - | plot(h400, add = T, col=" | + | |
| - | plot(h900, add = T, col=" | + | |
| - | + | ||
| - | m4 <- mean(means4) | + | |
| - | m25 <- mean(means25) | + | |
| - | m100 <- mean(means100) | + | |
| - | m400 <- mean(means400) | + | |
| - | m900 <- mean(means900) | + | |
| - | m1600 <- mean(means1600) | + | |
| - | m2500 <- mean(means2500) | + | |
| - | + | ||
| - | s4 <- sd(means4) | + | |
| - | s25 <- sd(means25) | + | |
| - | s100 <- sd(means100) | + | |
| - | s400 <- sd(means400) | + | |
| - | s900 <- sd(means900) | + | |
| - | s1600 <- sd(means1600) | + | |
| - | s2500 <- sd(means2500) | + | |
| - | + | ||
| - | sss <- c(4, | + | |
| - | means <- c(m4, m25, m100, m400, m900, m1600, m2500) | + | |
| - | sds <- c(s4, s25, s100, s400, s900, s1600, s2500) | + | |
| - | + | ||
| - | temp <- data.frame(sss, | + | |
| - | | + | |
| - | | + | |
| - | + | ||
| - | temp | + | |
| - | + | ||
| - | ses <- rep (NA, length(sss)) # std error memory | + | |
| - | for(i in 1: | + | |
| - | ses[i] = sqrt(var(ajstu)/sss[i]) | + | |
| - | } | + | |
| - | + | ||
| - | data.frame(ses) | + | |
| - | se.1 <- ses | + | |
| - | se.2 <- 2 * ses | + | |
| - | + | ||
| - | lower.s2 <- mean(ajstu)-se.2 | + | |
| - | upper.s2 <- mean(ajstu)+se.2 | + | |
| - | data.frame(cbind(sss, | + | |
| - | + | ||
| - | # 12/2 lecture | + | |
| - | # note that we draw the statistical calculation | + | |
| - | # by " | + | |
| - | n <- 80 | + | |
| - | mean.sample <- 103 | + | |
| - | + | ||
| - | sample <- rnorm2(n, mean.sample, | + | |
| - | mean(sample) | + | |
| - | sd(sample) | + | |
| - | + | ||
| - | diff <- mean.sample - mean.ajstu # this is actual difference | + | |
| - | se <- sd.ajstu / sqrt(n) # this is random error | + | |
| - | t.cal <- diff/se | + | |
| - | t.cal | + | |
| - | qnorm(0.025, | + | |
| - | qnorm(0.01/ | + | |
| - | qt(0.05/2, n-1, lower.tail=F) | + | |
| - | + | ||
| - | t.test(sample, | + | |
| - | + | ||
| - | # or we obtain the exact p value | + | |
| - | p.value <- pt(t.cal, n-1, lower.tail = F) | + | |
| - | p.value*2 | + | |
| + | ====== se value and sample size ====== | ||
| + | < | ||
| + | * :summary of hypothesis testing: | ||
| + | * *:summary of hypothesis testing: | ||
| + | </ | ||
| - | </ | ||
summary_of_hypothesis_testing.1764517460.txt.gz · Last modified: by hkimscil
