User Tools

Site Tools


chi-square_test

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
chi-square_test [2016/05/15 23:51] hkimscilchi-square_test [2025/11/30 23:11] (current) hkimscil
Line 13: Line 13:
     * like to using direct mathematical concepts. There are a lot of repetition     * like to using direct mathematical concepts. There are a lot of repetition
     * here (Dr. Rice once talked about this).     * here (Dr. Rice once talked about this).
-  * Pictures are taken by your TA at the RUSURE +  * Pictures are taken by your TA at the RUSURE campaign  
-    * campaign directed under Dr. Letterman and Dr. Stewart during the year, 2000. +    * which was directed by Dr. Letterman and Dr. Stewart during the year, 2000. 
-    * The study is ongoing at the SCILS department.+    * It is an ongoing study at the SCILS department.
  
 Let's start with what we know first. Let's start with what we know first.
Line 165: Line 165:
 |  yes  |  5  |  32  |  13  |  50  |    |  |  yes  |  5  |  32  |  13  |  50  |    | 
 |  Expected value  |  (20)  |  (21)  |  (9)  |  50  |    |  |  Expected value  |  (20)  |  (21)  |  (9)  |  50  |    | 
-|  (O-T)2 / T  |  (-15)<sup>2</sup>/20=11.25  |  (11)<sup>2</sup>/20=5.76  |  (4)<sup>2</sup>/20=1.78  |    |  18.79  | +|  (O-T)2 / T  |  (-15)<sup>2</sup>/20=11.25  |  (11)<sup>2</sup>/21=5.76  |  (4)<sup>2</sup>/9=1.78  |    |  18.79  | 
 |  no  |  35  |  10  |  5  |  50  |    |  |  no  |  35  |  10  |  5  |  50  |    | 
 |    |  (20)  |  (21)  |  (9)  |  50  |    |  |    |  (20)  |  (21)  |  (9)  |  50  |    | 
-|    |  (15)<sup>2</sup>/20=11.25  |  (-11)<sup>2</sup>/20=5.76  |  (-4)<sup>2</sup>/20=1.78  |    |  18.79  | +|    |  (15)<sup>2</sup>/20=11.25  |  (-11)<sup>2</sup>/21=5.76  |  (-4)<sup>2</sup>/9=1.78  |    |  18.79  | 
 |  Total  |  40  |  42  |  18  |  100  |  37.58  |  |  Total  |  40  |  42  |  18  |  100  |  37.58  | 
 Chi-square value = 37.58. \\  Chi-square value = 37.58. \\ 
Line 181: Line 181:
 5.991 at 0.05 probability 5.991 at 0.05 probability
 9.210 at 0.01 probability 9.210 at 0.01 probability
 +<code>
 +> qchisq(0.95, 2) # in R, we don't use 0.975 since we look up (the distribution table has) square values
 +[1] 5.991465
 +> qchisq(0.99, 2) # 
 +[1] 9.21034
 +
 +</code>
  
 These critical values do not exceed the chi-square value you obtained from your table -- 37.58. How do you want to relate them together? Think about the expected values -- the ideal types. Suppose you obtained the same values (observed values) as those of expected values, what would be your chi-square value? --Yes, it is going to be zero. Why? If you look at the formula These critical values do not exceed the chi-square value you obtained from your table -- 37.58. How do you want to relate them together? Think about the expected values -- the ideal types. Suppose you obtained the same values (observed values) as those of expected values, what would be your chi-square value? --Yes, it is going to be zero. Why? If you look at the formula
Line 251: Line 258:
  5.991 (0.05 probability)   5.991 (0.05 probability) 
  9.210 (0.01 probability)   9.210 (0.01 probability) 
 +
 +OR
 +<code>
 +> pchisq(2.73, df=2)
 +[1] 0.7446193
 +</code>
  
 Now the rest of what you need to do is to compare the numbers (chi-square value and the critical values). Now the rest of what you need to do is to compare the numbers (chi-square value and the critical values).
chi-square_test.1463356315.txt.gz · Last modified: by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki